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Simplified calculation of boundary S matrices
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Received 27 May 1997

Abstract. The antiferromagnetic Heisenberg spin chain withN spins has a sector withN =
odd, in which the number of excitations is odd. In particular, there is a state with asingle
one-particle excitation. We exploit this fact to give a simplified derivation of the boundaryS

matrix for the open antiferromagnetic spin-1
2 Heisenberg spin chain with diagonal boundary

magnetic fields.

1. Introduction

The ground state of the antiferromagnetic spin-1
2 Heisenberg spin chain

H = 1

4

N∑
n=1

(σn · σn+1− 1) σN+1 ≡ σ1 (1)

lies in the ‘even sector’ (i.e.N = even). Most investigations of the excitations of this model
consider only this sector (see, e.g., [1]), in which the number of excitations is necessarily
even.

However, as remarked by Faddeev and Takhtajan [2], there is also the ‘odd sector’ (i.e.
N = odd), in which the number of excitations is odd. In particular, there is a state with a
singleone-particle excitation.

In this letter, we exploit this fact to give a simplified derivation of the boundaryS

matrix [3] for the open antiferromagnetic spin-1
2 Heisenberg spin chain

H = 1

4

{ N−1∑
n=1

σn · σn+1+ 1

ξ−
σ z1 +

1

ξ+
σ zN

}
(2)

where the real parametersξ± > 1
2 correspond to boundary magnetic fields. Our analysis

follows closely the one in [4], which is a generalization of the approach developed by
Korepin–Andrei–Destri [6, 7] to calculate bulk two-particleS matrices. However, in contrast
to [4], we assume thatN is odd and consider one-particle states rather than two-particle
states. As a warm-up, we first briefly review the counting of excitations in both the even
and odd sectors of the closed spin chain.

2. Closed chain excitations

In this section, we briefly review the enumeration of excitations of the closed spin chain,
with Hamiltonian given by (1). Upon adopting the ‘string hypothesis’, the Bethe ansatz
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equations lead to the following equations for the (real) centresλnα of the strings (see, e.g.,
[1, 5]),

hn(λ
n
α) = J nα (3)

whereα = 1, . . . ,Mn, n = 1, . . . ,∞. The so-called counting functionhn(λ) is defined by

hn(λ) = 1

2π

{
Nqn(λ)−

∞∑
m=1

Mm∑
β=1

4nm(λ− λmβ )
}

(4)

4nm(λ) is given by

4nm(λ) = (1− δnm)q|n−m|(λ)+ 2q|n−m|+2(λ)+ · · · + 2qn+m−2(λ)+ qn+m(λ) (5)

andqn(λ) is the odd monotonic-increasing function defined by

qn(λ) = π + i log

(
λ+ 1

2in

λ− 1
2in

)
− π < qn(λ) 6 π. (6)

Moreover,{J nα } are integers or half-odd integers which satisfy

−J nmax6 J nα 6 J nmax (7)

whereJ nmax is given by

J nmax=
1

2
(N +Mn − 1)−

∞∑
m=1

min(m, n)Mm. (8)

We regard{J nα } as ‘quantum numbers’ which parametrize the Bethe ansatz states. For every
set {J nα } in the range given by (7) (no two of which are identical), we assume that there is
a unique solution{λnα} (no two of which are identical) of (3).

The energy, momentum, and spin eigenvalues of the Bethe ansatz states are given by

E = −π
∞∑
n=1

Mn∑
α=1

an(λ
n
α) (9)

P = −
∞∑
n=1

Mn∑
α=1

[qn(λ
n
α)− π ] (10)

S = Sz = N

2
−
∞∑
n=1

nMn (11)

where

an(λ) = 1

2π

dqn(λ)

dλ
= 1

2π

n

λ2+ (n2/4)
. (12)

The number of holes (excitations)ν in a given Bethe ansatz state is given by

ν = number of vacancies forJ 1
αs− number ofJ 1

αs

= (J 1
max− J 1

min+ 1)−M1. (13)

The ground state lies in the even sector, withM1 = (N/2), andMn = 0 for n > 1. We
see from (8) that this state hasJ 1

max= (N/4)− 1
2. Therefore, the ground state has no holes;

i.e. it is a ‘filled Fermi sea’, with (see (11)) spinS = Sz = 0. Further calculations show
that, forN →∞, the energy and momentum of the ground state are given by

E0 = −N log 2 P0 = Nπ

2
. (14)
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Consider now the state in the odd sector withM1 = (N/2) − 1
2 and Mn = 0 for

n > 1. This state hasJ 1
max = (N/4) − 1

4, and therefore it has one hole. This state has
spinS = Sz = 1

2. Moreover, calculations along the lines of [1, 5] show that the energy and
momentum are given by

E = E0+ ε(λ̃) P = P0+ p(λ̃) (15)

whereE0 andP0 are given by (14),

ε(λ) = π

2 coshπλ
p(λ) = tan−1(sinhπλ)− π

2
(16)

andλ̃ corresponds to the hole rapidity. This state consists of a single particle-like excitation
(‘kink’ or ‘spinon’) with spin-1

2, energyε(λ̃) and momentump(λ̃). The energy-momentum
dispersion relation is

ε = −π
2

sinp. (17)

Similarly, one can show that there exist states with any (non-negative) integer number
ν of excitations with the above dispersion relation. States withν = even lie in the even
sector, while states withν = odd lie in the odd sector. The total energy and momentum
are given by

E = E0+
ν∑
α=1

ε(λ̃α) P = P0+
ν∑
α=1

p(λ̃α). (18)

Note thatE0 andP0 (which are given by (14)) correspond to the ground-state energy and
momentum only forN = even. Indeed, forN →∞, the energy of a state with any finite
number of excitations has an infinite contributionE0 which must be subtracted. In order
to interpret the remaining finite part as the energy of the excitations, different subtractions
must be performed in the even and odd sectors of the model.

3. Open chain excitations

We turn now to the open spin chain, with HamiltonianH given by (2). The simultaneous
eigenstates ofH andSz have been determined by both the coordinate [8, 9] and algebraic
[10] Bethe ansatz.

Using the string hypothesis, the Bethe ansatz equations become [4]

hn(λ
n
α) = J nα (19)

where the counting functionhn(λ) is now given by

hn(λ) = 1

2π

{
(2N + 1)qn(λ)+

n∑
l=1

[qn+2ξ+−2l(λ)+ qn+2ξ−−2l(λ)]

−
∞∑
m=1

Mm∑
β=1

[4nm(λ− λmβ )+4nm(λ+ λmβ )]
}
. (20)

The requirement that Bethe ansatz solutions correspond to independent Bethe ansatz states
leads to the restrictionλnα > 0. The ‘quantum numbers’{J nα } are integers in the range

J nmin 6 J nα 6 J nmax (21)

where

J nmax− J nmin = N +Mn − 2

( ∞∑
m=1

min(m, n)Mm

)
− 1. (22)
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For simplicity, we assume that 2ξ± is not an integer, andξ± > 1
2.

The expressions for the energy andSz eigenvalues are the same as for the closed chain,
namely (9) and (11), respectively. (Of course, momentum and total spin are not good
quantum numbers for the open chain.)

As in the case of the closed chain, the Bethe ansatz state with a single one-particle
excitation lies in the odd sector withM1 = (N/2)− 1

2 andMn = 0 for n > 1. (The number
of holes is again given by (13).) This state hasSz = 1

2.
We shall need in the next section the densityσ(λ) of roots and hole for this state, which

is defined by

σ(λ) = 1

N

dh1(λ)

dλ
. (23)

Passing with care from the sum inh1(λ) to an integral, we obtain an integral equation,
whose solution is given by

σ(λ) = 2s(λ)+ 1

N
r(+)(λ) (24)

where

r(+)(λ) = s(λ)+ J (λ)+ J+(λ)+ J−(λ)+ J (λ− λ̃)+ J (λ+ λ̃) (25)

(plus terms that are higher order in 1/N ), λ̃ is the hole rapidity, and

s(λ) = 1

2 coshπλ
= 1

2π

∫ ∞
−∞

dω e−iωλ e−|ω|/2

1+ e−|ω|

J (λ) = 1

2π

∫ ∞
−∞

dω e−iωλ e−|ω|

1+ e−|ω|

J±(λ) = 1

2π

∫ ∞
−∞

dω e−iωλ e−(ξ±−
1
2 )|ω|

1+ e−|ω|
. (26)

4. Boundary S matrix

The boundaryS matrix describes the interaction of an excitation with the ends of the spin
chain. TheU(1) symmetry of the Hamiltonian boundary terms implies that the boundary
S matrix is of the diagonal form

K(λ, ξ) =
(
α(λ, ξ) 0

0 β(λ, ξ)

)
. (27)

We therefore need to explicitly determine the matrix elementsα(λ , ξ) andβ(λ , ξ), which
are the boundary scattering amplitudes for excitations withSz = + 1

2 and Sz = − 1
2,

respectively.
We proceed by examining states|λ̃〉a with a single one-particle excitation of rapidityλ̃.

The isotopic indexa is suppressed below. For such states, the following simple quantization
condition holds:

(ei2p(λ̃)NK(λ̃, ξ−)K(λ̃, ξ+)− 1)|λ̃〉 = 0. (28)

Herep(λ̃) is defined by (16), which is the expression for the momentum of a particle with
rapidity λ̃ for the corresponding system with periodic boundary conditions.

For theSz = + 1
2 state, the quantization condition implies

2p(λ̃)+ 1

N
8(+) = 2π

N
m (29)
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wherem is an integer and

ei8(+) = α(λ̃, ξ−) α(λ̃, ξ+). (30)

On the other hand, one can derive the identity [4, 5]

2p(λ̃)+ 2π

N

∫ λ̃

0
r(+)(λ) dλ+ constant= 2π

N
J̃ (31)

wherer(+)(λ) is the quantity introduced in (24). Comparing this result with (29), it follows
that

8(+) = 2π
∫ λ̃

0
r(+)(λ) dλ+ constant. (32)

Using the explicit expressions given in (25) and (26) forr(+)(λ), we obtain the following
result forα(λ, ξ) (up to a rapidity-independent phase factor):

α(λ, ξ) = 0(− 1
2iλ+ 1

4)

0( 1
2iλ+ 1

4)

0( 1
2iλ+ 1)

0(− 1
2iλ+ 1)

0(− 1
2iλ+ 1

4(2ξ − 1))

0( 1
2iλ+ 1

4(2ξ − 1))

0( 1
2iλ+ 1

4(2ξ + 1))

0(− 1
2iλ+ 1

4(2ξ + 1))
.

(33)

To determine the remaining elementβ(λ , ξ) of the boundaryS matrix, we consider the
Sz = − 1

2 state. The quantization condition implies

2p(λ̃)+ 1

N
8(−) = 2π

N
m (34)

with

ei8(−) = β(λ̃, ξ−)β(λ̃, ξ+). (35)

The Sz = − 1
2 state is most easily described within the Bethe ansatz approach by

changing the pseudovacuum to the state with all spins down. Sklyanin has shown [10] that
there is a corresponding changeξ± → −ξ± in the Bethe ansatz equations. The expression
for the energy eigenvalues remains the same, but the expression for theSz eigenvalues
becomes

Sz =
∞∑
n=1

nMn − N
2
. (36)

TheSz = − 1
2 state now corresponds to the Bethe ansatz state consisting of one hole in the

Fermi sea (M1 = (N/2)− 1
2 andMn = 0 for n > 1). The calculation of the corresponding

function r(−)(λ) is exactly the same as forr(+)(λ), except that we must track the change
ξ± → −ξ±. We find thatβ(λ, ξ) is given (up to a multiplicative constant) by

β(λ, ξ) = −λ+ i(ξ − 1
2)

λ− i(ξ − 1
2)
α(λ, ξ) (37)

whereα(λ, ξ) is given by (33). This completes the derivation of the boundaryS matrix.
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5. Discussion

We have seen that, by considering one-particle states, the boundaryS matrix for the open
Heisenberg chain can be obtained in a most direct and straightforward manner. We expect
that this approach can be used quite generally to calculate boundaryS matrices for integrable
models with boundaries whose Bethe ansatz equations are known and, in particular, for the
models for which the method of [4] has already been successfully applied (see, e.g., [11–
13]). We are now using this approach to compute [14] the boundaryS matrix for the
anisotropic spin-12 chain, which was first calculated using the vertex operator method [15].

This work was supported in part by the National Science Foundation under grant PHY-
9507829.
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